Tuesday, April 30, 2013

Power (Angio) Mode of Ultrasound

In contrast to the more widely used velocity mode, the power mode determines the frequency shift of the reflected echoes from the ultrasound energy . In the power mode display, the sum of the Doppler signal intensities reflected by moving particles is represented by levels of brightness while the magnitude of the flow velocity and different velocities as well as flow direction (in older devices) are ignored. The color intensity in the power mode is determined by the density of the moving reflectors. The power mode is more sensitive to slow flow and flow with only few reflectors as compared with the velocity mode. The more gates sampled along each color Doppler line, the better the signal-to-noise ratio. Lighter shades indicate higher densities of reflecting flow ab a Types of color coding used to display flowing blood: In the velocity mode (left), red and blue represent the flow direction and lighter shades a higher Doppler shift. In the power/angio mode (right),higher amplitudes of the reflected ultrasound echoes are displayed in lighter shades irrespective of the frequency and flow direction.
b Depiction of the right kidney by color duplex ultrasound in the velocity mode on the left and in the power Doppler mode on the right. In the velocity mode, the color coding of the vessels indicates the blood flow direction with veins being shown in blue (flow away from the transducer) and arteries in red (toward the transducer).Vessels to the level of the interloper vessels are depicted. The power Doppler mode provides no information on the flow direction of blood but enables evaluation of slow flow and is less angle dependent, which is why this mode is superior in depicting parenchymal blood flow in small vessels. The kidney (N) is marked with plus signs. Part of the liver (L) is depicted near the abdominal wall with visualization of peripheral vessels in the power Doppler mode. (in blood cells). While the power mode is similar to other techniques in that it only registers reflected echo signals within a certain range of Doppler frequency shifts, it is largely independent of the angle between the ultrasound beam and the blood vessel. Since blood does not flow strictly in one direction, there will always be some reflection of echo pulses even at an unfavorable insounation angle but color intensity is reduced at an angle around 90°. The power Doppler mode is particularly suitable for evaluating slow flow in small vessels and can thus be used to examine peripheral perfusion as well as perfusion in small tumor vessels or in parenchymal organs.
The power mode is limited by the fact that it does not provide qualitative or semi quantitative information on flow velocity. Moreover, it is more susceptible to artifacts induced by organ movement and has a poorer temporal resolution. There is no aliasing because the power mode is independent of the magnitude of the Doppler frequency shift. The main advantage of the power mode lies in the fact that it uses very low pulse repetition frequencies (in the range of some 100 hertz), which in turn enables the resolution of very small Doppler frequency shifts (slow flow). Such low pulse repetition frequencies would be highly susceptible to aliasing in velocity-dependent color coding. The power mode represents the intensities of the signals reflected by moving blood by different levels of brightness based on their amplitudes. The so-called bidirectional power mode offered by the manufacturers of state-of-the-art scanners enables simultaneous color coding of flow direction (blue and red). This is achieved by the activation of some additional ultrasound beams which solely serve the purpose of sampling and processing flow direction information using the autocorrelation technique.

1 comment:

  1. I have always seen the pictures that my sister's bring home from their ultrasounds but I never really understood them. This helps me out a lot more then the explanations that they gave me. I never really understood the science that went into an ultrasound. It's similar to a submarine and the technology we use for weather. http://www.evdi.com/procedures/ultrasound

    ReplyDelete